

Content Rating for Online Social Networks

Bryan Nehl

Kansas State University

bnehl@k-state.edu

Abstract

The author will demonstrate that text data from an Online
Social Network can be tokenized, filtered, expanded with
synonyms and rated with an approximated Vector State
Model cosine Θ function. The resulting value is used by an
agent to rate and possibly filter subscribed content.
Additionally, the agent can monitor a public content source
and identify and display content that may be potentially
interesting to the consumer.

 Introduction

Today there are numerous sources for real time

information resulting in information overload.

Colloquially, we have so much information streaming in

that it is referred to as “drinking from the fire hose.” One

approach to dealing with this overload is to not receive the

information at all. That approach is quickly dismissed as

not feasible since there would be information the consumer

would want to see that would be lost. With the

SkimmerAgent project the researcher takes the approach of

rating Twitter content from friends and “skimming” the

public time line for interesting content.

The organization of this paper is as follows: this

introduction, discussion of the concepts used in this

project, technical details of how the project was

implemented, results, possible future research and

conclusions.

Background

One of the many source of information today are online

social networks (OSN) such as Twitter, FaceBook and

LinkedIn. Twitter lets users post short SMS sized

messages telling people what they are doing. Twitter users

primarily view messages (tweets) from people they follow

(friend). However, there is also a public timeline which

displays tweets from users system wide. If the user has not

marked their tweets as protected any user can see their

Copyright © 2009, Bryan Nehl. All rights reserved.

tweets in the public timeline. SkimmerAgent will interact

with the user’s Twitter account, specifically, rating and

displaying tweets from their friends as well as skimming

the public timeline for interesting content.

According to Manning, Raghavan, & Schütze (2009),

tokenization is the process of breaking a given document

up into tokens. SkimmerAgent needs to use tokens to

analyze the content of the tweets.

SkimmerAgent also makes use of the concepts of content

identification and filtering. SkimmerAgent is able to

identify user names, hash tags and URLs in the tweets.

Filtering is implemented to remove URLs so that they are

not considered in the content rating.

Case folding is the process of eliminating case from

being taken into account when doing term matching. For

instance, after case folding “CaSe” and “case” are

equivalent. SkimmerAgent implements case folding as a

filter.

Stop words are words that are considered to be common

or frequently used and of little or no value for classification

purposes. For example, words such as: and, if, then are

stop words. SkimmerAgent uses the stop words list that

MySQL has published.

The vector space model (VSM), Lee, Chuang, and

Seamons (1997), is a way of looking at documents and

document sets. The VSM consists of a vector of tuples that

consist of the term, term frequency and document

frequency. Document similarity can be obtained by

calculated the angle between the query VSM and the

source VSM. However, computing the angle is an

expensive calculation so the cosine Θ approach or other

approximation is often substituted. SkimmerAgent uses an

alternate approach proposed by Lee.

From discussion with Dr. Hsu and the Turney (2005)

paper the researcher implemented the idea of synonym

expansion. That is, the query terms are expanded with

additional terms that are synonyms of the query terms.

Precision is the fraction of returned documents that are

relevant. Recall is the computed by dividing the number of

relevant items retrieved out of the number of all relevant

documents. There is an inverse relationship between recall

and precision. That is, if you have a 100% recall (like this

application) expect that you will have a low precision.

PEAS

This section will review the Performance, Environment,

Actuators and Sensors associated with the SkimmerAgent.

Performance

The agent performance is measured by the unit tests

created in development. These are covered in detail in the

Evaluation Methods section.

Environment

The agent will be working in an environment that includes

interaction with Twitter, the user and other agents. The

Twitter world is partially observable. The agent may

perform queries of the Twitter environment. However, it

does not have all information about what is happening in

the Twitter world.

 The agent may be considered strategic since it is in an

environment where it can work to alter its own

environment. However, there are other agents that are also

interacting with the Twitter world which will partially

determine the agents view.

 The agent is working in an episodic manner. It checks

the state of the world, processes and then acts.

 The Twitter world does change while the agent is

deliberating. For instance, other agents can be posting

information.

 The agent is limited in the actions that it can perform

therefore it is considered a discrete environment.

However, the actions can take nearly unrestricted

parameters.

 The environment is multi-agent as the SkimmerAgent

interacts with the user and indirectly with other agents via

the Twitter world.

Actuators

SkimmerAgent has the ability to send messages to the

Twitter world. Currently, SkimmerAgent only sends those

messages that the user requests it send.

 SkimmerAgent also displays processed friend and public

timeline data to the users display.

 If query term expansion is active, the agent displays the

list of expanded query terms to the user.

Sensors

The user may interact with the agent by setting options via

a menu interface, specifying a query sentence or inputting

a message to tweet.

 The agent also retrieves and processes the user’s friend

and public timelines.

Methodology

The researcher chose to implement this project with

Microsoft Visual Studio 2008 in C# with the .Net

Framework 3.5 as it is the environment with which they

are the most productive. The application was created with

an iterative approach utilizing test driven design (TDD).

Code decoupling was enhanced by the use of an interface

based thought process. By tending towards a fluent

interface it is thought that code should be easier to

comprehend.

The architecture of the application has been modularized

to allow for testing and reusability. For example, there is a

Filtering project and a corresponding Filter Tests project.

The filtering DLL may now be used in other projects. The

GUI of the application uses a custom component for

tweeting and implements a Model-View-Controller (MVC)

pattern in the overall primary form.

Connecting to Twitter

To minimize the development time the TweetSharp Twitter

API was utilized. TweetSharp is a C# API wrapper around

the standard REST style Twitter API. The TweetSharp

API uses a fluent interface and includes classes to ease

deserialization of the various Twitter feeds.

OAuth is a library that was needed in order for the

application to be able to work as a proxy for the user and to

have SkimmerAgent be identified when the user tweeted.

The application was registered as an OAuth application and

in code the application launches a web browser for the user

to authorize the application. The user has to copy the PIN

number that is returned from OAuth and plug it into

Skimmer. With this PIN SkimmerAgent can work on

behalf of the user. The current version of SkimmerAgent

requires PIN authentication for every run.

In this first iteration the agent simply connects to the

Twitter service.

Posting a Tweet

Partially in order to verify connection with the Twitter

world and to provide more utility to the user, the next step

was to be able to send a message or “tweet” to Twitter.

 A user control was created which would display the

number of allowed characters remaining allowed. The

control has an event to which other controls may subscribe.

When the event is triggered the control container requests

that the message be sent to Twitter.

Retrieving Tweets

In order to do content rating, we must first have content!

The next iteration focused on retrieving the friends

timeline and the public timeline.

 The TweetSharp API was used to retrieve the timelines

and put them into an object structure which could be

processed.

Information Processing

To implement tokenization a Tokenizer class was created

which splits the incoming tweet up into terms based on a

set of delimiters. A pre-filter had to be implemented to

remove URLs. Otherwise, the Tokenizer would split up

the URL as if it were sentences that had been run together.

A filter interface is specified as taking a list of tokens,

performing the filtering function and returning the filtered

terms. SkimmerAgent uses filters to identify and remove

stop words and user Ids. The stop word list is the list used

by MySQL. Another filter is implemented which removes

the leading # from hash tags. Case folding is also

implemented as a filter. The implementation of IFilter,

IExpand and a fluent interface paradigm enabled the

chaining of methods. For instance, the content to rate

could be created as the result of chaining like:

StopWordsFilter(ToLowerFilter(UserIdsFilter(StripHashes

Filter(Tokenize(PreFilter(source)))))).

Synonym Expansion

The WordNet library was used in the term expansion class.

The Expand method would create a new list of tokens to be

returned. Initially, the list would include the original query

tokens. Then the WordNet library was used to obtain

synonyms for each token. These synonym tokens are then

added to the expanded terms list which is returned.

Transformation from Tokens to VSM

Before the content can be rated it must first be transform

the tokens into a Vector State Model (VSM). This was one

of the most challenging aspects of the project.

The query document and source documents must be

converted into a VSM representation. The VSM vector is

made up of VSM terms which map to tokens in the

originating document. Each token in the originating

document is AddTerm() to the VSM object. The

AddTerm() method looks for an existing VSM term. If a

match is found, the term frequency is incremented. If the

term is not found, a new term is added to the VSM vector

and the initial frequency is set to 1.

 When it comes to computing document similarity the

researcher added a short circuit to the calculation. If either

VSM contains no terms, the resulting similarity is 0. This

raises the question, what if we compare two empty

documents?

Content Rating

The tweet ranking method implemented an

approximation that was described in Lee (1997). The

similarity between the query document and the search

document is computed by using the summation of the term

frequency divided by the square root of the number of

terms in the document space. The document set frequency

is ignored since we are only looking at individual tweets

and not the overall content from a single given user.

SkimmerAgent pulls the users friends timeline and rates

all of the incoming tweets. The public timeline is queried

once a minute, which is the delay between updates from

Twitter. There is the potential to connect to an alpha

service which provides a sample of the full Twitter stream.

The display criteria is set to >= 0 so that all tweets are

displayed. The application is set to display any content

that is ranked >= 0.01. This is a very low threshold.

However, it seems to work very well for our purposes.

The author has made available a quick video how-to and

executable code on the SkimmerAgent blog.

Evaluation Methods

As part of TDD, unit testing was employed throughout the

development process. In this way, the researcher was able

to verify expected functionality.

 Pre-filtering for URLs was tested with source strings in

numerous formats. The unit tests include empty strings,

basic URLs, fully qualified URLs and multiple URL

occurrences.

 Tokenization was tested in a similar fashion to URLs.

Numerous tests were constructed using single and multiple

delimiters. The tests then checked that the expected tokens

were ascertained.

 Username identification was tested by running a test set

of terms through the filter and verifying that the UserIds

were removed from the list of terms. Stop words filtering

was done in the same manner.

 Lowercasing or case folding was provided tokens of

mixed case, all upper case and all lower case as test inputs.

 Proper functioning of the synonym expansion was

verified by testing words with known synonyms.

 The content rating calculation was tested by creating

query and source documents that would satisfy conditions

such as no similarity, full similarity and then checking the

evaluation against expected results.

 One of the benefits of unit testing is that if a potential

defect is spotted in production a test can be written to

reproduce the problem. Then the developer can revise the

code to handle the new test case while not breaking any of

the existing functionality. The other test cases must still be

passing after modifying the code for the new test case.

Results

Initially a simple content rating had been implemented

which was purely term frequency occurrence based and

normalized for a result in the 0 to 100 range. For our

purposes this seemed to be an acceptable calculation.

After implementing the cosine theta approximation Lee

(1997) the resulting rating is no longer normalized for size.

Using the content rating SkimmerAgent has successfully

identified “interesting” content from friends as well as

displayed content picked up from the public timeline.

WordNet synonym expansion yielded some unexpected

results. First, some of the synonyms given were multi-

word phrases which SkimmerAgent is not currently

equipped to identify. The multi-word phrases were

returned strung together with underscores where the spaces

would be. This would mean additional tokenization of the

phrase and then a more advanced search through the source

document. The second surprise was the expansion of an

airport code, SPF, to Sun_Protection_Factor!

In the initial implementation of SkimmerAgent the

weight of original terms is equivalent to that of the

expanded terms. Some words get expanded to very

common terms such as “word.” This can lead to many

false positives being displayed in the skimmed public

timeline.

Precision and Recall

For SkimmerAgent, recall is always 1. That is, it always

has a 100% recall because the agent retrieves all tweets for

analysis. Of course, this results in a lower precision.

 To evaluate the content rating algorithm, the researcher

sampled the CNN twitter feed. A console application was

created to rate the content of the tweets. An initial run

with a single query term set to the word “president”

yielded no hits—a 0 for precision. Reviewing the source

data, the researcher chose the term “boss.” This yielded a

precision of .1. There was no difference in using an

expanded goal terms set.

 Next, the researcher used a carefully crafted data set.

The data set was built in a manner that with synonym

expansion there would be false positive ratings. The query

term used the word “president.” The data set included the

single word “president” along with the word used in

sentences. There were also sentences constructed that

referred to chairman of the board, chairwoman, and chair

as a piece of furniture.

 Running test data through the core processing routines

without synonym expansion yielded a precision of .3.

Running test data through the core processing routines with

the synonym expansion resulted in an increase of precision

to 0.6. However, there were 3 false positives. Or an error

rate of 50%!

Possible Future Research

The username and URL filters could easily be used as the

basis for creating content classifiers which could be used to

feed other methods. For instance, capturing the URLs

could provide a capability to aggregate URLs throughout

the day, pre-fetch the web pages and provide the user with

thumbnails for review.

Once a tweet with interesting content has been identified

on the public time line, a full document set rating could be

done against the tweets of the posting person. That is, the

Lee (1997) computation with document frequency term

could be implemented. If a strong rating is returned,

SkimmerAgent could propose that the user follow this

person—or automatically follow them!

There is also the potential to use the same technique

against the document set (tweets) of existing friends with

the potential of suggesting people to prune from the list of

followed people.

The existing agent could be expanded to handle phrases

as terms and not just single words. It would also be nice to

be able to specify which words to expand.

During research, the only application that was found to

be using supervised learning was at the website

www.philtro.com. However, at the time of this writing the

website is not available. The website displayed your tweet

information and the user would mark it as having content

that they would like to see come through in the filtered

feed.

A nice enhancement would be to add a learning facility.

The agent would start with using user provided terms as a

base. The user could then train with additional positive

matches (generalization) as well as identify false positives

for term removal (specialization). The existing

architecture of filtering and expanding could be used to

implement the specialization and generalization

respectively. The associated filter or expansion method

work with the list of terms provided to it by the agent.

I’ve also thought about the idea of a setting which would

request that the agent occasionally let random content

through the public timeline filter. Or the agent could

monitor trending topics and provide a tweet from that

context. The idea behind these ideas is to potentially

introduce the user to some content outside of their normal

interests.

There is also the potential to aggregate and skim data

from other OSNs. An agent that aggregated data from

numerous networks and by default only displayed

sentences with ratings above a user configurable threshold

could save that user significant time.

Conclusions

During the course of developing SkimmerAgent the

researcher learned about different AI areas. Development

of the agent gave birth to numerous additional possible

research projects in the area of Online Social Networks.

The agents content rating of friends tweets has been useful

for “at a glance” review of tweets. Having a skimmed

public timeline has led to seeing more interesting content

and prompted further research on a number of occasions.

The researcher feels that SkimmerAgent could serve as a

good starting point for these new questions.

References

Manning, C., Raghavan, P., & Schütze, H. (2009). An

Introduction to Information Retrieval: Online edition.

Cambridge, England: Cambridge University Press.

Retrieved from http://nlp.stanford.edu/IR-

book/information-retrieval-book.html

Lee, D. L., Chuang, H., and Seamons, K. (1997).

Document Ranking and the Vector-Space Model. IEEE

Softw. 14, 2 (Mar. 1997), 67-75. DOI=

http://dx.doi.org/10.1109/52.582976

Turney, Peter D. (2005) Measuring Semantic Similarity by

Latent Relational Analysis.

Salton & Buckley (1988). Term-Weighting Approaches In

Automatic Text Retrieval. Information Processing and

Management Vol. 24, No. 5, pp. 513-523

Gulutzan, P. (n.d.) MySQL stop words. Retrieved

November 8, 2009, from http://dev.mysql.com/tech-

resources/articles/full-text-revealed.html#stopwords

http://dev.mysql.com/tech-resources/articles/full-text-revealed.html#stopwords
http://dev.mysql.com/tech-resources/articles/full-text-revealed.html#stopwords

