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Abstract 

The author will demonstrate that text data from an Online 
Social Network can be tokenized, filtered, expanded with 
synonyms and rated with an approximated Vector State 
Model cosine Θ function.  The resulting value is used by an 
agent to rate and possibly filter subscribed content.  
Additionally, the agent can monitor a public content source 
and identify and display content that may be potentially 
interesting to the consumer. 

 Introduction   

Today there are numerous sources for real time 

information resulting in information overload.  

Colloquially, we have so much information streaming in 

that it is referred to as “drinking from the fire hose.”  One 

approach to dealing with this overload is to not receive the 

information at all.  That approach is quickly dismissed as 

not feasible since there would be information the consumer 

would want to see that would be lost.  With the 

SkimmerAgent project the researcher takes the approach of 

rating Twitter content from friends and “skimming” the 

public time line for interesting content. 

The organization of this paper is as follows: this 

introduction, discussion of the concepts used in this 

project, technical details of how the project was 

implemented, results, possible future research and 

conclusions.  

Background 

One of the many source of information today are online 

social networks (OSN) such as Twitter, FaceBook and 

LinkedIn.  Twitter lets users post short SMS sized 

messages telling people what they are doing.  Twitter users 

primarily view messages (tweets) from people they follow 

(friend).  However, there is also a public timeline which 

displays tweets from users system wide.  If the user has not 

marked their tweets as protected any user can see their 
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tweets in the public timeline.   SkimmerAgent will interact 

with the user’s Twitter account, specifically, rating and 

displaying tweets from their friends as well as skimming 

the public timeline for interesting content. 

According to Manning, Raghavan, & Schütze (2009), 

tokenization is the process of breaking a given document 

up into tokens.  SkimmerAgent needs to use tokens to 

analyze the content of the tweets. 

SkimmerAgent also makes use of the concepts of content 

identification and filtering.  SkimmerAgent is able to 

identify user names, hash tags and URLs in the tweets.  

Filtering is implemented to remove URLs so that they are 

not considered in the content rating. 

Case folding is the process of eliminating case from 

being taken into account when doing term matching.  For 

instance, after case folding “CaSe” and “case” are 

equivalent.  SkimmerAgent implements case folding as a 

filter. 

Stop words are words that are considered to be common 

or frequently used and of little or no value for classification 

purposes.  For example, words such as: and, if, then are 

stop words.  SkimmerAgent uses the stop words list that 

MySQL has published. 

The vector space model (VSM), Lee, Chuang, and 

Seamons (1997), is a way of looking at documents and 

document sets.  The VSM consists of a vector of tuples that 

consist of the term, term frequency and document 

frequency.  Document similarity can be obtained by 

calculated the angle between the query VSM and the 

source VSM.  However, computing the angle is an 

expensive calculation so the cosine Θ approach or other 

approximation is often substituted.  SkimmerAgent uses an 

alternate approach proposed by Lee. 

From discussion with Dr. Hsu and the Turney (2005) 

paper the researcher implemented the idea of synonym 

expansion.  That is, the query terms are expanded with 

additional terms that are synonyms of the query terms. 

Precision is the fraction of returned documents that are 

relevant.  Recall is the computed by dividing the number of 

relevant items retrieved out of the number of all relevant 

documents.  There is an inverse relationship between recall 



and precision.  That is, if you have a 100% recall (like this 

application) expect that you will have a low precision. 

PEAS 

This section will review the Performance, Environment, 

Actuators and Sensors associated with the SkimmerAgent. 

Performance 

The agent performance is measured by the unit tests 

created in development.  These are covered in detail in the 

Evaluation Methods section. 

Environment 

The agent will be working in an environment that includes 

interaction with Twitter, the user and other agents.  The 

Twitter world is partially observable.  The agent may 

perform queries of the Twitter environment.  However, it 

does not have all information about what is happening in 

the Twitter world. 

 The agent may be considered strategic since it is in an 

environment where it can work to alter its own 

environment.  However, there are other agents that are also 

interacting with the Twitter world which will partially 

determine the agents view. 

 The agent is working in an episodic manner.  It checks 

the state of the world, processes and then acts. 

 The Twitter world does change while the agent is 

deliberating.  For instance, other agents can be posting 

information. 

 The agent is limited in the actions that it can perform 

therefore it is considered a discrete environment.  

However, the actions can take nearly unrestricted 

parameters. 

 The environment is multi-agent as the SkimmerAgent 

interacts with the user and indirectly with other agents via 

the Twitter world. 

Actuators 

SkimmerAgent has the ability to send messages to the 

Twitter world.  Currently, SkimmerAgent only sends those 

messages that the user requests it send. 

 SkimmerAgent also displays processed friend and public 

timeline data to the users display. 

 If query term expansion is active, the agent displays the 

list of expanded query terms to the user. 

Sensors 

The user may interact with the agent by setting options via 

a menu interface, specifying a query sentence or inputting 

a message to tweet. 

 The agent also retrieves and processes the user’s friend 

and public timelines. 

Methodology 

The researcher chose to implement this project with 

Microsoft Visual Studio 2008 in C# with the .Net 

Framework 3.5 as it is the environment with which they 

are the most productive.  The application was created with 

an iterative approach utilizing test driven design (TDD).  

Code decoupling was enhanced by the use of an interface 

based thought process.  By tending towards a fluent 

interface it is thought that code should be easier to 

comprehend. 

The architecture of the application has been modularized 

to allow for testing and reusability.  For example, there is a 

Filtering project and a corresponding Filter Tests project.  

The filtering DLL may now be used in other projects.  The 

GUI of the application uses a custom component for 

tweeting and implements a Model-View-Controller (MVC) 

pattern in the overall primary form. 

Connecting to Twitter 

To minimize the development time the TweetSharp Twitter 

API was utilized.  TweetSharp is a C# API wrapper around 

the standard REST style Twitter API.  The TweetSharp 

API uses a fluent interface and includes classes to ease 

deserialization of the various Twitter feeds. 

OAuth is a library that was needed in order for the 

application to be able to work as a proxy for the user and to 

have SkimmerAgent be identified when the user tweeted.  

The application was registered as an OAuth application and 

in code the application launches a web browser for the user 

to authorize the application.  The user has to copy the PIN 

number that is returned from OAuth and plug it into 

Skimmer.  With this PIN SkimmerAgent can work on 

behalf of the user.  The current version of SkimmerAgent 

requires PIN authentication for every run. 

In this first iteration the agent simply connects to the 

Twitter service. 

Posting a Tweet 

Partially in order to verify connection with the Twitter 

world and to provide more utility to the user, the next step 

was to be able to send a message or “tweet” to Twitter. 

 A user control was created which would display the 

number of allowed characters remaining allowed.  The 

control has an event to which other controls may subscribe.  

When the event is triggered the control container requests 

that the message be sent to Twitter. 

Retrieving Tweets 

In order to do content rating, we must first have content!  

The next iteration focused on retrieving the friends 

timeline and the public timeline. 

 The TweetSharp API was used to retrieve the timelines 

and put them into an object structure which could be 

processed. 



Information Processing 

To implement tokenization a Tokenizer class was created 

which splits the incoming tweet up into terms based on a 

set of delimiters.  A pre-filter had to be implemented to 

remove URLs.  Otherwise, the Tokenizer would split up 

the URL as if it were sentences that had been run together. 

A filter interface is specified as taking a list of tokens, 

performing the filtering function and returning the filtered 

terms.  SkimmerAgent uses filters to identify and remove 

stop words and user Ids.  The stop word list is the list used 

by MySQL.  Another filter is implemented which removes 

the leading # from hash tags.  Case folding is also 

implemented as a filter.  The implementation of IFilter, 

IExpand and a fluent interface paradigm enabled the 

chaining of methods.  For instance, the content to rate 

could be created as the result of chaining like: 

StopWordsFilter(ToLowerFilter(UserIdsFilter(StripHashes

Filter(Tokenize(PreFilter(source)))))). 

Synonym Expansion 

The WordNet library was used in the term expansion class.  

The Expand method would create a new list of tokens to be 

returned.  Initially, the list would include the original query 

tokens.  Then the WordNet library was used to obtain 

synonyms for each token.  These synonym tokens are then 

added to the expanded terms list which is returned. 

Transformation from Tokens to VSM 

Before the content can be rated it must first be transform 

the tokens into a Vector State Model (VSM).  This was one 

of the most challenging aspects of the project. 

The query document and source documents must be 

converted into a VSM representation.  The VSM vector is 

made up of VSM terms which map to tokens in the 

originating document.  Each token in the originating 

document is AddTerm() to the VSM object.  The 

AddTerm() method looks for an existing VSM term.  If a 

match is found, the term frequency is incremented.  If the 

term is not found, a new term is added to the VSM vector 

and the initial frequency is set to 1. 

 When it comes to computing document similarity the 

researcher added a short circuit to the calculation.  If either 

VSM contains no terms, the resulting similarity is 0.  This 

raises the question, what if we compare two empty 

documents? 

Content Rating 

The tweet ranking method implemented an 

approximation that was described in Lee (1997).  The 

similarity between the query document and the search 

document is computed by using the summation of the term 

frequency divided by the square root of the number of 

terms in the document space.  The document set frequency 

is ignored since we are only looking at individual tweets 

and not the overall content from a single given user. 

SkimmerAgent pulls the users friends timeline and rates 

all of the incoming tweets.  The public timeline is queried 

once a minute, which is the delay between updates from 

Twitter.  There is the potential to connect to an alpha 

service which provides a sample of the full Twitter stream.  

The display criteria is set to >= 0 so that all tweets are 

displayed.    The application is set to display any content 

that is ranked >= 0.01.  This is a very low threshold.  

However, it seems to work very well for our purposes. 

The author has made available a quick video how-to and 

executable code on the SkimmerAgent blog. 

Evaluation Methods 

As part of TDD, unit testing was employed throughout the 

development process.  In this way, the researcher was able 

to verify expected functionality. 

 Pre-filtering for URLs was tested with source strings in 

numerous formats.  The unit tests include empty strings, 

basic URLs, fully qualified URLs and multiple URL 

occurrences. 

 Tokenization was tested in a similar fashion to URLs.  

Numerous tests were constructed using single and multiple 

delimiters.  The tests then checked that the expected tokens 

were ascertained. 

 Username identification was tested by running a test set 

of terms through the filter and verifying that the UserIds 

were removed from the list of terms.  Stop words filtering 

was done in the same manner. 

 Lowercasing or case folding was provided tokens of 

mixed case, all upper case and all lower case as test inputs. 

 Proper functioning of the synonym expansion was 

verified by testing words with known synonyms. 

 The content rating calculation was tested by creating 

query and source documents that would satisfy conditions 

such as no similarity, full similarity and then checking the 

evaluation against expected results. 

 One of the benefits of unit testing is that if a potential 

defect is spotted in production a test can be written to 

reproduce the problem.  Then the developer can revise the 

code to handle the new test case while not breaking any of 

the existing functionality.  The other test cases must still be 

passing after modifying the code for the new test case. 

Results 

Initially a simple content rating had been implemented 

which was purely term frequency occurrence based and 

normalized for a result in the 0 to 100 range.  For our 

purposes this seemed to be an acceptable calculation.  

After implementing the cosine theta approximation Lee 

(1997) the resulting rating is no longer normalized for size.  

Using the content rating SkimmerAgent has successfully 

identified “interesting” content from friends as well as 

displayed content picked up from the public timeline. 



WordNet synonym expansion yielded some unexpected 

results.  First, some of the synonyms given were multi-

word phrases which SkimmerAgent is not currently 

equipped to identify.  The multi-word phrases were 

returned strung together with underscores where the spaces 

would be.  This would mean additional tokenization of the 

phrase and then a more advanced search through the source 

document.  The second surprise was the expansion of an 

airport code, SPF, to Sun_Protection_Factor! 

In the initial implementation of SkimmerAgent the 

weight of original terms is equivalent to that of the 

expanded terms.  Some words get expanded to very 

common terms such as “word.”  This can lead to many 

false positives being displayed in the skimmed public 

timeline. 

Precision and Recall 

For SkimmerAgent, recall is always 1.  That is, it always 

has a 100% recall because the agent retrieves all tweets for 

analysis.  Of course, this results in a lower precision. 

 To evaluate the content rating algorithm, the researcher 

sampled the CNN twitter feed.  A console application was 

created to rate the content of the tweets.  An initial run 

with a single query term set to the word “president” 

yielded no hits—a 0 for precision.  Reviewing the source 

data, the researcher chose the term “boss.”  This yielded a 

precision of .1.  There was no difference in using an 

expanded goal terms set. 

 Next, the researcher used a carefully crafted data set.  

The data set was built in a manner that with synonym 

expansion there would be false positive ratings.  The query 

term used the word “president.”  The data set included the 

single word “president” along with the word used in 

sentences.  There were also sentences constructed that 

referred to chairman of the board, chairwoman, and chair 

as a piece of furniture. 

 Running test data through the core processing routines 

without synonym expansion yielded a precision of .3.  

Running test data through the core processing routines with 

the synonym expansion resulted in an increase of precision 

to 0.6.  However, there were 3 false positives.  Or an error 

rate of 50%! 

Possible Future Research 

The username and URL filters could easily be used as the 

basis for creating content classifiers which could be used to 

feed other methods.  For instance, capturing the URLs 

could provide a capability to aggregate URLs throughout 

the day, pre-fetch the web pages and provide the user with 

thumbnails for review. 

Once a tweet with interesting content has been identified 

on the public time line, a full document set rating could be 

done against the tweets of the posting person.  That is, the 

Lee (1997) computation with document frequency term 

could be implemented.  If a strong rating is returned, 

SkimmerAgent could propose that the user follow this 

person—or automatically follow them! 

There is also the potential to use the same technique 

against the document set (tweets) of existing friends with 

the potential of suggesting people to prune from the list of 

followed people. 

The existing agent could be expanded to handle phrases 

as terms and not just single words.  It would also be nice to 

be able to specify which words to expand. 

During research, the only application that was found to 

be using supervised learning was at the website 

www.philtro.com.  However, at the time of this writing the 

website is not available.  The website displayed your tweet 

information and the user would mark it as having content 

that they would like to see come through in the filtered 

feed. 

A nice enhancement would be to add a learning facility.  

The agent would start with using user provided terms as a 

base.  The user could then train with additional positive 

matches (generalization) as well as identify false positives 

for term removal (specialization).  The existing 

architecture of filtering and expanding could be used to 

implement the specialization and generalization 

respectively.  The associated filter or expansion method 

work with the list of terms provided to it by the agent.  

I’ve also thought about the idea of a setting which would 

request that the agent occasionally let random content 

through the public timeline filter.  Or the agent could 

monitor trending topics and provide a tweet from that 

context.  The idea behind these ideas is to potentially 

introduce the user to some content outside of their normal 

interests. 

There is also the potential to aggregate and skim data 

from other OSNs.  An agent that aggregated data from 

numerous networks and by default only displayed 

sentences with ratings above a user configurable threshold 

could save that user significant time.  

Conclusions 

During the course of developing SkimmerAgent the 

researcher learned about different AI areas.  Development 

of the agent gave birth to numerous additional possible 

research projects in the area of Online Social Networks.  

The agents content rating of friends tweets has been useful 

for “at a glance” review of tweets.  Having a skimmed 

public timeline has led to seeing more interesting content 

and prompted further research on a number of occasions.   

The researcher feels that SkimmerAgent could serve as a 

good starting point for these new questions. 
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